LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

FIFTH SEMESTER - APRIL 2014

ST 5400 - APPLIED STOCHASTIC PROCESSES

Date : 09/04/2014
\square Max. : 100 Marks
Dept. No.

Answer ALL the following:
$\left(10 X_{2}=20\right)$

1) Define a stochastic process with independent increments.
2) Define a Markov chain.
3) When do you say that a state is recurrent or transient in a Markov chain?
4) Find the period of the states 0 and 1 with transition probability matrix.

$$
P=\left[\begin{array}{cc}
0 & 1 \\
1 / 2 & 1 / 2
\end{array}\right] .
$$

5) Explain n-step transition probability matrix.
6) A hospital receives on the average 3 emergency calls per hour. What is the probability that there is no call during the first 2 hours?
7) Consider the Markov chain with transition probability matrix and states $0,1,2$:

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0
\end{array}\right)
$$

Verify whether it is irreducible.
8) Write the PGF of the Poisson process.
9) Define a stationary distribution.
10) State the postulates of pure birth process.
PART - B

Answer any FIVE of the following:
11) State and prove Chapman- Kolmogorov equation.
12) Given the transition probability matrix of a Markov chain, with states $1,2,3$

$$
\mathrm{P}=\left[\begin{array}{lll}
0.1 & 05 & 0.4 \\
0.6 & 0.2 & 0.2 \\
0.3 & 0.4 & 0.3
\end{array}\right]
$$

$$
P\left[X_{0}=i\right]=1 / 3, i=1,2,3
$$

Find (i) $\mathrm{P}\left[\mathrm{X}_{2}=3\right]$ and (ii) $\mathrm{P}\left[\mathrm{X} 3=2, \mathrm{X}_{2}=3, \mathrm{X}_{1}=3, \mathrm{X}_{0}=2\right]$
13) Show that the discrete queuing is a Markov chain.
14) If $i \leftrightarrow j$, then show that if i is recurrent then j is also recurrent.
15) Let $X_{1}(t)$ and $X_{2}(t)$ be two independent Poisson processes with parameters λ_{1} and λ_{2} respectively. Obtain the distribution of $\mathrm{X}_{1}(\mathrm{t})+\mathrm{X}_{2}(\mathrm{t})$.
16) A housewife buys 3 kinds of cereals A, B and C. She never buys the same cereal in successive weeks. If she buys cereal A in a week, the next week she buys B. However if she buys B or C, the next week she is 3 times as likely to buy A as the other cereal. Obtain the transition probability matrix.
17) Obtain the inter arrival time distribution in the Poisson process with parameter λ.
18) Consider a Markov chain with transition probability matrix

$$
\mathrm{P}=\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right] 0<\mathrm{a}<1,0<\mathrm{b}<1
$$

Show that $P^{n}=\frac{1}{a+b}\left[\begin{array}{ll}b & a \\ b & a\end{array}\right]+(1-\mathrm{a}-\mathrm{b})^{\mathrm{n}}\left[\begin{array}{rr}a & -a \\ -b & b\end{array}\right]$.

PART - C

Answer any TWO of the following:
19) (a) Explain the different types of classification of a stochastic process with examples.
(b) Explain how the inventory model can be viewed as a Markov chain.
20) (a) Show that i is recurrent if and only if $\sum_{n} P_{i i}^{n}=\infty$
(b) Show that in a one dimension random walk 0 is recurrent.
21) State the postulates of a Poisson process and derive the Poisson process.
22) (a) State the theorem used to find the stationary distribution. (5)
(b) Consider the Markov chain with states $0,1,2,3$ and the transition probability matrix

$$
P=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 / 2 & 1 / 8 & 1 / 8 & 1 / 4
\end{array}\right]
$$

Check whether this chain satisfies all the conditions for getting a stationary distribution. Hence obtain the stationary probabilities.

